РОССИЯ ООО «ТЕЛЕКОНТРОЛЬ»

42 3295	
-	
	КОНТРОЛЛЕР ТАБЛО РС2
	KOIIII OJIJILI TADJIO POZ
	Руководство по эксплуатации

СОДЕРЖАНИЕ

1	НАЗНАЧЕНИЕ	3
2	ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ	3
_		_
3	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
4	МАРКИРОВКА	5
5	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	5
2	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	_
0	I EARNING OBOJI) ANIBARNIE	3
7	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	5

В связи с постоянной работой по совершенствованию в конструкцию изделия могут быть внесены несущественные изменения, не отраженные в настоящем издании, но не ухудшающие работу изделия.

ВВЕДЕНИЕ

Настоящий документ предназначен для ознакомления с конструкцией и принципом работы контроллера табло PC2 (далее – контроллер).

1 НАЗНАЧЕНИЕ

- 1.1 Контроллер предназначен для отображения значения частоты на выносном цифровом табло..
- 1.2 Контроллер предназначен для применения в условиях макроклиматических районов с умеренным климатом для размещения под крышей (в укрытии).

2 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

2.1 Внешний вид контроллера представлен на рисунке 1.

Рисунок 1 – Внешний вид контроллера

- 2.2 Контроллер обеспечивает выполнение следующих функций:
- циклический опрос частотомера ЕС3020 и получение значений частоты;
- выдача на выносное табло значений частоты;
- модификация резидента и параметров стыков контроллера через Port.

- 2.3 Питание контроллера осуществляется напряжением 24 В постоянного тока через двух-контактный соединитель X4 «=24В» с зажимами «под винт». Полярность подключаемого источника указана маркировкой на зажимах. От нарушения полярности предусмотрена защита диодом.
- 2.4 К трехконтактному соединителю X1 стыка Port с зажимами «под винт» подключается линия связи с частотомером. Назначение зажимов соединителя X1 в соответствии с маркировкой приведена в таблице 1.

Таблица 1 – Назначение зажимов соединителя X1 контроллера

Обозначе- ние зажи- ма	Направление сигнала	Назначение	
G	Общий	Общий проводник стыка (соединен с общим проводом внутренней схемы контроллера)	
Α	Вход-выход	Цепь A стыка RS-485 (положительный полюс)	
В	Вход-выход	Цепь В стыка RS-485 (отрицательный полюс)	

- 2.5 Для подключения табло предназначен стык Tablo контроллера с двумя разъемами X2 и X3.
- 2.6 Разъем X2 типа ВН-16 предназначен для подключения анодов индикаторов. Назначение контактов разъема X2 представлено в таблице 2 (первый контакт разъема маркирован треугольником на корпусе разъема). Подключение к разъему осуществляется розеткой IDC-16, установленной на конце плоского кабеля с шагом 1,27 мм.

Таблица 2 – Назначение контактов разъема Х2 контроллера

Номер зажима	Обозначение сигнала	Индикатор. Контакт	Назначение
1			не подключен
2	IND1	A1.1, A1.8	Анод индикатора 1 - старшего разряда
3			не подключен
4	IND2	A2.1, A2.8	Анод индикатора 2
5			не подключен
6	IND3	A3.1, A3.8	Анод индикатора 3
7			не подключен
8	IND4	A4.1, A4.8	Анод индикатора 4- младшего разряда
9			не подключен
10			не подключен
11			не подключен
12			не подключен
13			не подключен
14			не подключен
15			не подключен
16			не подключен

2.7 Разъем X3 типа ВН-16 предназначен для подключения общих катодов индикаторов. Назначение контактов разъема X3 представлено в таблице 3 (первый контакт разъема маркирован треугольником на корпусе разъема). Подключение к разъему осуществляется розеткой IDC-16, установленной на конце плоского кабеля с шагом 1,27 мм.

Таблица 3 – Назначение контактов разъема ХЗ контроллера

Номер зажима	Обозначение сигнала	Индикатор. Контакт	Назначение
1	GND		Общий (подключен к общему проводнику внутренней схемы контроллера)

Контроллер РС2. Руководство по эксплуатации

Номер зажима	Обозначение сигнала	Индикатор. Контакт	Назначение
2	C1	A1A4.2	Общий катод сегмента е индикаторов 14
3	GND		Общий
4	C2	A1A4.4	Общий катод сегмента d индикаторов 14
5	GND		Общий
6	C3	A1A4.6	Общий катод сегмента с индикаторов 14
7	GND		Общий
8	C4	A1A4.8	Общий катод сегмента Dp индикаторов 14
9	GND		Общий
10	C5	A1A4.10	Общий катод сегмента b индикаторов 14
11	GND		Общий
12	C6	A1A4.12	Общий катод сегмента а индикаторов 14
13	GND		Общий
14	C7	A1A4.14	Общий катод сегмента f индикаторов 14
15	GND		Общий
16	C8	A1A4.16	Общий катод сегмента g индикаторов 14

3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 3.1 Информационная емкость контроллера:
- 3.2 число внешних стыков 1: Port и Tablo;
- 3.3 число подключаемых индикаторов табло для отображения десятичных разрядов числа 4.
 - 3.4 Характеристики стыка Port

Физический уровень — RS-485. Тип соединителя — 3-х контактный винтовой зажим проводников сечением до $1,5 \text{ мm}^2$.

Цепи порта:

- G общий провод цепей порта.
- А прием/передача данных (положительный полюс);
- В прием/передача данных (отрицательный полюс).

Тип передачи – асинхронный.

Скорость приема-передачи определяется загружаемым параметром из ряда: 2,4; 4,8; 9,6;...; 57,6 кбит/с. При поставке установлена скорость 2,4 кбит/с в соответствии с типовой скоростью порта частотомера.

Защита цепей порта от статического напряжения – 15 кВ.

Изоляции цепей порта относительно внутренней схемы контроллера и цепей подключения табло нет.

3.5 Характеристики стыка Tablo

Стык Tablo обеспечивает питание индикаторов табло. Напряжение источника питания табло - 12 В. Тип соединителей – два 10-ти контактных штыревых соединителя типа ВН-10. Табло должно подключаться двумя плоскими кабелями с установленными на концах розетками типа IDC-10.

Тип подключаемых индикаторов табло – SA40 фирмы Kingbright.

Цепи порта:

- разъем «X2»:
- С1 общий катод сегментов е индикаторов;
- С2 общий катод сегментов d индикаторов;
- С3 общий катод сегментов с индикаторов;
- C4 общий катод сегментов dp индикаторов;
- С5 общий катод сегментов b индикаторов;
- С6 общий катод сегментов а индикаторов;
- С7 общий катод сегментов f индикаторов;
- С8 общий катод сегментов д индикаторов;
- разъем «X2»:
- IND1 анод первого (старшего разряда) индикатора;
- IND2 анод второго индикатора;
- IND3 анод третьего индикатора;
- IND4 анод четвертого (младшего разряда) индикатора.

Изоляции цепей порта относительно внутренней схемы контроллера и цепей подключения табло нет.

- 3.6 Частота опроса частотомера около 2 Гц.
- 3.7 Конструкция корпуса контроллера предусматривает его установку на DIN-рейку.

- 3.8 Питание контроллера осуществляется от внешнего блока питания напряжением 24±2,4 В постоянного тока. Изоляция питающего ввода контроллера относительно других выводов контроллера выдерживает в течение 1 мин воздействие испытательного напряжения 1000 В постоянного тока. Тип соединителя 2-х контактный винтовой зажим проводников сечением до 1,5 мм².
 - 3.9 Мощность, потребляемая контроллером, не превышает 12,0 Вт.
 - 3.10 Диапазон рабочих температур контроллера: от 0 до плюс 70° C.
 - 3.11 Масса контроллера не более 0,15 кг.

4 МАРКИРОВКА

- 4.1 На контроллере нанесена маркировка:
- 1) на корпусе с лицевой стороны:
 - условное обозначение «РС2»;
 - год и месяц изготовления;
 - надпись «Сделано в России»;
 - наименование и реквизиты производителя;
 - обозначение разъемов и индикаторов;
- 2) на разъемах обозначение разъемов;
- 3) на соединителях обозначение зажимов.

5 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 5.1 Меры безопасности
- 5.1.1 К работе с контроллерами допускаются лица, ознакомленные с настоящим документом, а также прошедшие инструктаж по технике безопасности при работе с электрооборудованием, питаемым напряжением до 1000 В.
- 5.1.2 Перед подключением контроллера к сетевому блоку питания необходимо убедиться в надежности подключения последнего к контуру защитного заземления.
 - 5.2 Параметризация контроллера

Параметризация контроллера не предусмотрена.

- 5.3 Загрузка файлов в контроллер
- 5.3.1 Для загрузки файлов резидента (исполняемого модуля рабочей программы контроллера) непосредственно в память контроллера следует использовать программу MegaLoader (рисунок 2).

Рисунок 2 – Окно программы MegaLoader

- 5.3.2 Загрузка файлов осуществляется следующим образом:
 - соберите схему на рисунке 3;

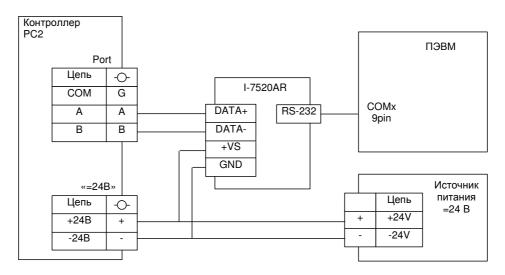


Рисунок 3 – Схема подключения контроллера для загрузки файла резидента

- запустите на ПЭВМ программу MegaLoader. Выберите тип процессора ATMega8. Установите СОМ-порт ПЭВМ и его параметры, дважды щелкая мышкой по надписям «COMx» и «9600» в нижней части окна программы;
- щелкните кнопку «Файл» и выберите файл для загрузки на плату контроллера и нажмите кнопку «Запись»;
- рестартуйте контроллер отключением-включением питания. Индикатор контроллера кратковременно (0,1 с) засветится и погаснет. Установление соединения с контроллером отображается индикатором зеленого цвета в окне программы MegaLoader. Начавшийся процесс записи файла в контроллер отображается индикатором прогресса. При завершении загрузки файла программа выдаст соответствующее сообщение.

Программный модуль активизируется автоматически после его загрузки, а новые параметры активизируются после рестарта.

- 5.4 Проверка функционирования контроллера
- 5.4.1 Для проверки функционирования контроллера выполните следующее:
- 1) выполните параметризацию частотомера EC3020 согласно руководства по его эксплуатации:
 - скорость обмена на стыке RS-485 2400 бит/с, формат данных 8N1 (установлены по умолчанию);
 - адрес 1 (установлен по умолчанию);
- 2) соберите схему проверки на рисунке 4;

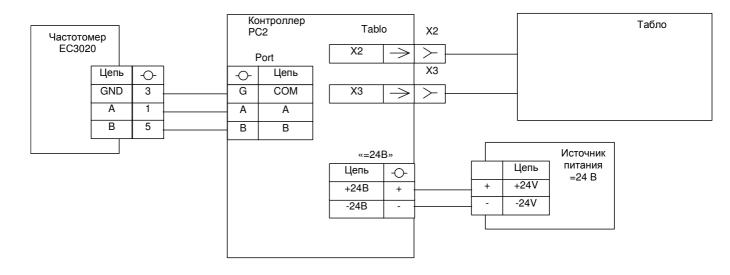


Рисунок 4 – Схема проверки контроллера

3) включите блок питания.

Контроллер считается выдержавшим проверку на функционирование, если на табло отображается значение частоты.

5.5 Монтаж и демонтаж контроллера

Монтаж контроллера выполняется на стандартную рейку DIN 35 мм. Для снятия контроллера с рейки используйте шлицевую отвертку: отведите отверткой выступающий конец опоры вниз и одновременно отведите нижнюю часть контроллера от рейки.

- 5.6 Возможные неисправности и способы их устранения
- 5.6.1 Перечень возможных неисправностей, вероятные причины их проявления и способы устранения этих неисправностей приведены в таблице 4.

Таблица 4

Внешнее проявление неисправности	Дополнительные при- знаки	Вероятная причина неисправности
1. Значение частоты на табло не отображается	1. Индикатор «COM1» светится, сигнализируя	1. Нарушена связь с частотомером - проверьте соединения согласно рисунку 4.
	о не поступлении дан- ных с частотомера	2. Адрес частотомера не равен 1.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1 Обслуживание
- 6.1.1 Виды и периодичность технического обслуживания контроллера приведены в таблице 5.

Таблица 5

Вид технического обслуживания	Периодичность
1 Внешний осмотр	Один раз в месяц
2 Проверка функционирования	Один раз в год

6.1.2 При техническом обслуживании контроллера необходимо соблюдать требования безопасности согласно 5.1.

6.1.3 Проведение пуско-наладочных работ, гарантийное и послегарантийное обслуживание должны производиться специализированной организацией, имеющей договорные отношения с изготовителем.

6.2 Консервация

- 6.2.1 Производить расконсервацию при хранении контроллеров более 1 года путем снятия оберточной бумаги и удаления мешочков с селикагелем.
- 6.2.2 Производить переконсервацию контроллеров частичным вскрытием транспортной тары и заменой селикагеля с последующим закрытием транспортной тары.
- 6.2.3 Производить расконсервацию, переконсервацию и упаковывание контроллеров следует в закрытых вентилируемых помещениях при температуре и относительной влажности окружающего воздуха, соответствующих условиям хранения (см. 7.1) при отсутствии в окружающей атмосфере агрессивных примесей.

7 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

7.1 Хранение

- 7.1.1 Контроллеры следует хранить в упаковке предприятия-изготовителя в закрытых отапливаемых помещениях при температуре окружающего воздуха от плюс 5 до плюс 40 $^{\circ}$ C и относительной влажности 80 $^{\circ}$ C при температуре плюс 25 $^{\circ}$ C.
- 7.1.2 В местах хранения контроллеров в окружающем воздухе должны отсутствовать кислотные, щелочные и другие примеси и токопроводящая пыль.
- 7.1.3 Расстояние между стенами, полом хранилища и контроллером должно быть не менее 100 мм.
- 7.1.4 Расстояние между отопительным оборудованием хранилищ и контроллером должно быть не менее 0,5 м.
- 7.1.5 Допустимая длительность хранения контроллеров в транспортной таре 6 месяцев с момента изготовления, при этом транспортная тара должна быть без подтеков и загрязнения.

7.2 Транспортирование

7.2.1 Транспортирование контроллеров в упаковке предприятия-изготовителя производится всеми видами транспорта в крытых транспортных средствах (железнодорожным, автомобильным, водным транспортом – в трюмах, самолетом – в отапливаемых герметизированных отсеках) при температуре окружающего воздуха от минус 35 до плюс 70 $^{\circ}$ C и относительной влажности 100 $^{\circ}$ C.