42 3295

КОНТРОЛЛЕР SP1

Руководство по эксплуатации

СОДЕРЖАНИЕ

1	НАЗНАЧЕНИЕ	3
2	ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ	3
3	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОНТРОЛЛЕРА	4
4	МАРКИРОВКА	5
5	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	6
6	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	.10
7	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	.11

В связи с постоянной работой по совершенствованию в конструкцию изделия могут быть внесены несущественные изменения, не отраженные в настоящем издании, но не ухудшающие работу изделия.

ВВЕДЕНИЕ

Настоящий документ предназначен для ознакомления с конструкцией и принципом работы контроллера SP1.

1 НАЗНАЧЕНИЕ

1.1 Контроллер SP1 (далее – контроллер) является промежуточным преобразователем потока данных. Контроллер предназначен для управления модулями индикации и табло диспетчерского щита в составе телемеханических комплексов.

2 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

2.1 Внешний вид контроллера приведен на рисунке 1.

Рисунок 1 – Внешний вид контроллера

- 2.2 Контроллер обеспечивает выполнение следующих функций:
- 1) непрерывный прием потока данных основного канала через Порт1 в протоколе ТМ800А;
- 2) циклическая выдача данных на модули индикации через Порт0;
- 3) контроль состояния связи с модулями индикации;
- 4) модификация резидента и параметров стыков контроллера через Порт1.

2.3 Для подключения к управляющему контроллеру (источнику данных) и сети квитирования событий предусмотрены два гальванически изолированных стыка: Порт1 и Порт2. Тип интерфейса – RS-485/422 (для RS-485 объединяются цепи А и Ү, В и Z). Назначение зажимов пятиконтактных разъемных соединителей Порт1 и Порт2 представлено в таблице 1.

Таблица 1 -	- Назначение	зажимов	разъемных	соединителей	Порт1	и По	рт2
i aosiniqa i		000/10/10/00	paobolinibilit	000д/11/11/07/10/1			

Номер	Обозначение	Направление	Назиацие		
вывода	сигнала	сигнала	Пазпачение		
1	С	Общий	Общий проводник цепей стыка		
2	A	Вход	Вход данных (положительный полюс)		
3	В	Вход	Вход данных (отрицательный полюс)		
4	Y	Выход	Выход данных (положительный полюс)		
5 Z Выход		Выход	Выход данных (отрицательный полюс)		

2.4 Для подключения модулей индикации и табло предусмотрены три параллельно включенных разъема типа RJ12 (6P4C), соединенных с портом Порт0 контроллера. Модули и табло могут подключаться к любому из этих разъемов, образуя цепочки. В таблице **Ошибка! Источник ссылки не найден.** представлено назначение выводов разъема RJ12 (6P4C). На рисунке 2 представлена нумерация контактов разъема RJ12 (6P4C).

ВНИМАНИЕ: Разводка разъема RJ12 (6P4C) контроллера отличается от разводки аналогичных разъемов модулей и табло, это необходимо учитывать при установке окончаний на соединительный кабель между контролером и модулем/табло.

Таблица 2 – Назначение выводов разъемов типа RJ12 Порт0 для подключения модулей индикации и табло

Номер Обозначение Направление		Направление	Назирионио		
вывода	сигнала	сигнала	Пазначение		
1	nc	-	не подключен		
2	SCL	Вход-выход	Синхронизация данных		
3	SDA	Вход-выход	Данные/адрес		
		Общий	Общий проводник стыка (соединен с общим проводни-		
4	GND		ком контроллера и с отрицательным полюсом внутрен-		
			него источника питания контроллера)		

Рисунок 2 – Нумерация контактов разъема RJ12 (6Р4С)

2.5 Контроллер обеспечивает индикацию завершения инициализации и состояния приема данных.

После рестарта, инициализации и завершения внутренних тестов индикатор 1 (в нижней части контроллера - желтого цвета) светится, индицируя готовность контроллера к приему и передаче данных.

Индикатор 2 (в нижней части контроллера - красного цвета) светится при отсутствии потока входящих данных от источника – контроллера DP1.

3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Информационная емкость контроллера:

3.2 максимальное число управляемых устройств: модулей индикации типа MI1 – 16, табло мозаичных типа PM1 – 16;

3.3 число портов контроллера – 3: Порт0, Порт1 и Порт2.

3.4 Характеристики портов Порт1 и Порт2

Физический уровень – RS-422/485. Выбор типа интерфейса осуществляться пользователем – перемычками на разъеме. Тип соединителя – 5-ти контактный разъемный соединитель Phoenix Contact.

Цепи порта:

- С общий провод цепей порта.
- А прием данных (положительный полюс);
- В прием данных (отрицательный полюс);
- Y передача данных (положительный полюс);
- Z передача данных (отрицательный полюс).

Тип передачи – асинхронный.

Скорость приема-передачи определяется загружаемым параметром из ряда: 2,4; 4,8; 9,6;...; 57,6 кбит/с.

Защита цепей порта от статического напряжения – 15 кВ.

Изоляция цепей порта относительно цепей питания контроллера выдерживает в течение 1 мин воздействие испытательного напряжения 1000 В постоянного тока.

3.5 Требования к порту Порт0

Физический уровень – двухпроводный магистральный интерфейс с адресацией подключаемых устройств (TWI). Соединители – три параллельно подключенных 4-х контактных соединителя типа RJ12 (6P4C).

Цепи порта:

- SCL синхронизация данных;
- SDA данные/адрес;
- GND общий обратный проводник цепей порта.

Тип передачи – асинхронный.

Скорость приема-передачи – около 400 кбит/с.

Защита цепей порта от статического напряжения – 15 кВ.

Изоляция цепей порта относительно других цепей контроллера выдерживает в течение 1 мин воздействие испытательного напряжения 1000 В постоянного тока.

3.6 Степень защиты корпуса контроллера от проникновения пыли и влаги – IP20.

3.7 Конструкция корпуса контроллера предусматривает его установку на DIN-рейку. Каждый порт конструктивно обособлен, внешние подключения к портам выполняются разъемными соединителями, а проводов к соединителями - без пайки.

3.8 Питание контроллера осуществляется от внешнего блока питания напряжением 24±2,4 В постоянного тока. Изоляция питающего ввода контроллера относительно других выводов контроллера выдерживает в течение 1 мин воздействие испытательного напряжения 1000 В постоянного тока. Тип соединителя для питающего ввода – 2-х контактный разъемный соединитель типа Phoenix Contact.

3.9 Мощность, потребляемая контроллером, не превышает 2,0 Вт.

3.10 Диапазон рабочих температур контроллера: - от 0 до плюс 70°С.

3.11 Масса контроллера – не более 0,15 кг.

4 МАРКИРОВКА

4.1 На контроллере нанесена маркировка:

1) на корпусе с боковой стороны:

- условное обозначение «SP1»;
- год и месяц изготовления;
- надпись «Сделано в России»;
- наименование и реквизиты производителя;

2) на корпусе с лицевой стороны – нумерация разъемов;

3) на розетке - нумерация зажимов.

5 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

5.1 Меры безопасности

5.1.1 К работе с контроллерами допускаются лица, ознакомленные с настоящим документом, а также прошедшие инструктаж по технике безопасности при работе с электрооборудованием, питаемым напряжением до 1000 В.

5.1.2 Перед подключением контроллера к сетевому блоку питания необходимо убедиться в надежности подключения последнего к контуру защитного заземления.

5.2 Параметризация контроллера

Для настройки параметров контроллера используйте программу DeviceConfig (рисунок 3) из комплекта поставки контроллера. Программа DeviceConfig создает файл (с расширением hex), который необходимо загрузить в контроллер.

Порядок выполнения параметризации контроллера:

- На закладке «Общие» установите частоту кварца 11059200 Гц и параметры для Асинхронного порта 1, через который будет приниматься поток данных ТМ800А: скорость 9600 бит/с, длина посылки ТМ800А – в зависимости от числа подциклов (число подциклов * 11+2)*9/8 байт.
- На закладке «Устройства/Серверы»: Сервер собственно контроллер SP1, принимающий данные от контроллера DP1. Порт 1 Сервера настроен на прием потока данных в протоколе TM800A. Адрес Сервера на порту 1 условный и используется на закладке Клиенты для адресации данных. Начинаем с кнопки «Добавить» Сервер для порта 1 (Порт 2 пока вообще не используем). Установите количество каналов TC и TИ для выбранного устройства КП. Формат данных TИ установите «0...250» (один байт на значение TИТ), апертуру равной 1 и переходите на закладку «Клиенты»;
- На закладке «Устройства/Клиенты»: Клиент приемник данных (модуль МІ1 или табло PM1). Порт относится к SP1 (для связи с модулями и табло используется один порт 0 -TWI). Адреса: для модуля МІ1 – от 0 до 15, для табло PM1 – от 16 до 31. Для каждого

клиента указываем индивидуальный адрес. В таблице назначения каналов модуля указываем индекс канала Сервера (Порт=1, Адрес= назначенному на закладке Сервера, Канал= номер канала Сервера). Для каждого канала ТИ указывается смещение (от 0 до 250) и коэффициент с плавающей точкой (используется запятая или точка – по настройкам Windows). Установите стиль отображения положительных и отрицательных значений для табло РМ1. После заполнения всех полей нажмите «Сохранить» - данные будут сохранены в файле – укажите его имя.

2. Загрузите файл параметров в контроллер согласно п.5.3.

7	Devic	eConf	ïg					
	Устрой	ство:	S	P1			~	
0	бщие	Устроі	йства					
	Прием данных Рассылка данных							
	Индек	кс клие	нта:				1 из 1	
	Пор	т контр	оллера	c 0		- Положи Символ:	пельные	
	Адре	ес моду	уля:	0		Цвет:	~	
	Типм	юдуля:		PM1		Отрицательные		
						Цвет:	~	
	Назна	ачение	канало	в моли	ng:			
	Номер	Порт	Адрес	Канал	Смещ	Ксэф	Предыдущий	
	0	0	0	0	0	0	Следующий	
							Добавить	
							Удалить	
	Сохранить Откорить							

Рисунок 3 – Окно программы DeviceConfig

5.3 Загрузка файлов в контроллер

Для загрузки файлов резидента (исполняемого модуля рабочей программы контроллера) и параметров, подготовленных программой DPConfigurator, непосредственно в память контроллера следует использовать программу MegaLoader (рисунок 4).

😿 MegaLoader		
Тип процессора:	ATMega64	~
Имя файла: D:\Pf mega 057	ixe\SP1.a90 Запись	
COM1 9600	0	Фаил

Рисунок 4 – Окно программы MegaLoader

Загрузка файла осуществляется следующим образом:

подключите контроллер к СОМ-порту ПЭВМ согласно схеме на рисунке 5;

Рисунок 5 – Схема подключения контроллера для загрузки файла резидента или параметров

• запустите на ПЭВМ программу MegaLoader (рисунок 4). Установите СОМ-порт и его параметры (если нет уверенности в параметрах - используйте умолчание), дважды щелкая мышкой по надписям «COMx» и «9600» в нижней части окна программы;

- выберите файл (кнопка «Файл») прошивки или параметров для загрузки в контроллер;
 - установите тип процессора ATMega64;
 - нажмите кнопку «Запись»;

• рестартуйте контроллер отключением-включением питания. Установление соединения с контроллером отображается индикатором зеленого цвета в окне программы. Начавшийся процесс записи файла в контроллер отображается индикатором прогресса. При завершении загрузки программа выдаст соответствующее сообщение.

Загруженные параметры контроллер активизирует после рестарта.

5.4 Проверка функционирования контроллера

5.4.1 Для проверки функционирования контроллера выполните следующее:

- 1) соберите схему проверки контроллера на рисунке 6;
- 2) включите блок питания;
- 3) загрузите в контроллер SP1 параметры SP1_mi1_0 pm1_0.hex из комплекта поставки контроллера, руководствуясь п.5.3;
- 4) запустите на ПЭВМ программу TeleSimulator. Установите в окне программы:

- порт СОМ1, скорость обмена 9600 бит/с, формат данных 8N1;
- тип протокола ТМ800А;
- число каналов ТС 64, число каналов ТИТ 8;

Выберите закладку «Сервер КП» и нажмите кнопку «Пуск». В нижней части окна программы красным цветом должны отображаться исходящие посылки, имитирующие поток данных от КП ТМ800А; индикатор 2 контроллера должен погаснуть, сигнализируя о поступлении на вход данных;

5) изменяйте значение 1-го канала ТИТ в окне программы и наблюдайте отображаемое значение на табло;

Рисунок 6 – Схема проверки контроллера

6) изменяйте состояние канала TC 1 в окне программы и наблюдайте свечение индикатора ячейки 1.

Контроллер считается выдержавшим проверку на функционирование, если на табло отображается установленное в окне программы значение ТИТ1, а на индикаторе ячейки – мигающее состояние, соответствующее установленному состоянию канала TC1.

5.5 Монтаж и демонтаж контроллера

Монтаж контроллера выполняется на стандартную рейку DIN 35 мм. Съем контроллера с рейки выполняется при помощи шлицевой отвертки: используя отвертку как рычаг, а в качестве опоры - нижнюю кромку корпуса контроллера, отвести отверткой выступающий конец опоры вниз, одновременно отводя нижнюю часть контроллера от рейки.

5.6 Подключение линий связи

5.6.1 Внешние цепи должны подключаться к контроллеру согласно схеме на рисунке Ошибка! Источник ссылки не найден.

5.7 Возможные неисправности и способы их устранения

5.7.1 Перечень возможных неисправностей, вероятные причины их проявления и способы устранения этих неисправностей приведены в таблице 3.

Таблица 3

Наименование неисправности, внеш- нее проявление и дополнительные признаки	Вероятная причина не ности	Способ устранения неис- правности	
1. Контроллер не управляет модуля-	Отсутствует питание	контрол-	Проверить цепь и питания
ми, индикаторы его не светятся	лера		контроллера

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

6.1 Обслуживание

6.1.1 Виды и периодичность технического обслуживания контроллера приведены в таблице 4.

Таблица 4

Вид технического обслуживания	Периодичность		
1 Внешний осмотр	Один раз в месяц		
2 Проверка функционирования	Один раз в год		

6.1.2 При техническом обслуживании контроллера необходимо соблюдать требования безо-пасности согласно 5.1.

6.1.3 Проведение пуско-наладочных работ, гарантийное и послегарантийное обслуживание производятся специализированной организацией, имеющей договорные отношения с изготовителем.

6.2 Консервация

6.2.1 Производить расконсервацию при хранении контроллеров более 1 года путем снятия оберточной бумаги и удаления мешочков с селикагелем.

6.2.2 Производить переконсервацию контроллеров частичным вскрытием транспортной тары и заменой селикагеля с последующим закрытием транспортной тары.

6.2.3 Производить расконсервацию, переконсервацию и упаковывание контроллеров следует в закрытых вентилируемых помещениях при температуре и относительной влажности окружающего воздуха, соответствующих условиям хранения (см. 7.1) при отсутствии в окружающей атмосфере агрессивных примесей.

7 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

7.1 Хранение

7.1.1 Контроллеры следует хранить в упаковке предприятия-изготовителя в закрытых отапливаемых помещениях при температуре окружающего воздуха от плюс 5 до плюс 40 °C и относительной влажности 80 % при температуре плюс 25 °C.

7.1.2 В местах хранения контроллеров в окружающем воздухе должны отсутствовать кислотные, щелочные и другие примеси и токопроводящая пыль.

7.1.3 Расстояние между стенами, полом хранилища и контроллером должно быть не менее 100 мм.

7.1.4 Расстояние между отопительным оборудованием хранилищ и контроллером должно быть не менее 0,5 м.

7.1.5 Допустимая длительность хранения контроллеров в транспортной таре 6 месяцев с момента изготовления, при этом транспортная тара должна быть без подтеков и загрязнения.

7.2 Транспортирование

7.2.1 Транспортирование контроллеров в упаковке предприятия-изготовителя производится всеми видами транспорта в крытых транспортных средствах (железнодорожным, автомобильным, водным транспортом – в трюмах, самолетом – в отапливаемых герметизированных отсеках) при температуре окружающего воздуха от минус 35 до плюс 70 °C и относительной влажности 100 % °C.